Intrinsic Deregulation of Vascular Smooth Muscle and Myofibroblast Differentiation in Mesenchymal Stromal Cells from Patients with Systemic Sclerosis

نویسندگان

  • Björn Hegner
  • Theres Schaub
  • Rusan Catar
  • Angelika Kusch
  • Philine Wagner
  • Kirill Essin
  • Claudia Lange
  • Gabriela Riemekasten
  • Duska Dragun
چکیده

INTRODUCTION Obliterative vasculopathy and fibrosis are hallmarks of systemic sclerosis (SSc), a severe systemic autoimmune disease. Bone marrow-derived mesenchymal stromal cells (MSCs) from SSc patients may harbor disease-specific abnormalities. We hypothesized disturbed vascular smooth muscle cell (VSMC) differentiation with increased propensity towards myofibroblast differentiation in response to SSc-microenvironment defining growth factors and determined responsible mechanisms. METHODS We studied responses of multipotent MSCs from SSc-patients (SSc-MSCs) and healthy controls (H-MSCs) to long-term exposure to CTGF, b-FGF, PDGF-BB or TGF-β1. Differentiation towards VSMC and myofibroblast lineages was analyzed on phenotypic, biochemical, and functional levels. Intracellular signaling studies included analysis of TGF-β receptor regulation, SMAD, AKT, ERK1/2 and autocrine loops. RESULTS VSMC differentiation towards both, contractile and synthetic VSMC phenotypes in response to CTGF and b-FGF was disturbed in SSc-MSCs. H-MSCs and SSc-MSCs responded equally to PDGF-BB with prototypic fibroblastic differentiation. TGF-β1 initiated myofibroblast differentiation in both cell types, yet with striking phenotypic and functional differences: In relation to H-MSC-derived myofibroblasts induced by TGF-β1, those obtained from SSc-MSCs expressed more contractile proteins, migrated towards TGF-β1, had low proliferative capacity, and secreted higher amounts of collagen paralleled by reduced MMP expression. Higher levels of TGF-β receptor 1 and enhanced canonical and noncanonical TGF-β signaling in SSc-MSCs accompanied aberrant differentiation response of SSc-MSCs in comparison to H-MSCs. CONCLUSIONS Deregulated VSMC differentiation with a shift towards myofibroblast differentiation expands the concept of disturbed endogenous regenerative capacity of MSCs from SSc patients. Disease related intrinsic hyperresponsiveness to TGF-β1 with increased collagen production may represent one responsible mechanism. Better understanding of repair barriers and harnessing beneficial differentiation processes in MSCs could widen options of autologous MSC application in SSc patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Histological and Immunological Evaluation of Gastrointestinal Stromal Tumors

Background: Gastrointestinal stromal tumors (GISTs) constitute the majority of gastrointestinal mesenchymal tumors. They usually express a proto-oncogen protein called CD117 detected by immunohistochemistry. This study investigated the differentiation of GISTs as well as the risk of aggressive behaviors in GISTs from surgically-treated patients in university affiliated hospitals. Methods: The c...

متن کامل

A Comparative, semi-quantitative Evaluation of Myofibroblasts Between Mucoepidermoid Carcinoma and Pleomorphic Adenoma Using α -Smooth Muscle Actin Marker

Abstract Introduction: Myofibroblasts are the main stromal components that constitute the desmoplastic reaction of host cells to inductive stimuli exerted by tumor cells. The purpose of this study was to evaluate the score of myofibroblasts using α -smooth muscle actin marker (α–SMA) in mucoepidermoid carcinoma (MEC) in comparison with pleomorphic adenoma (PA)and study the amount presence of t...

متن کامل

Impaired Endothelium-Mesenchymal Stem Cells Cross-talk in Systemic Sclerosis: a Link Between Vascular and Fibrotic Features

INTRODUCTION To assess if an impaired cross-talk between endothelial cells (ECs) and perivascular/multipotent mesenchymal stem cells (MSCs) might induce a perturbation of vascular repair and leading to a phenotypic switch of MSC toward myofibroblast in Systemic Sclerosis (SSc). METHODS We investigated different angiogenic and profibrotic molecules in a tridimentional matrigel assay, performin...

متن کامل

Glycogen synthase kinase-3β/β-catenin signaling regulates neonatal lung mesenchymal stromal cell myofibroblastic differentiation.

In bronchopulmonary dysplasia (BPD), alveolar septa are thickened with collagen and α-smooth muscle actin-, transforming growth factor (TGF)-β-positive myofibroblasts. We examined the biochemical mechanisms underlying myofibroblastic differentiation, focusing on the role of glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling pathway. In the cytoplasm, β-catenin is phosphorylated on the NH(...

متن کامل

Correction: Neonatal Periostin Knockout Mice Are Protected from Hyperoxia-Induced Alveolar Simplication

In bronchopulmonary dysplasia (BPD), alveolar septae are thickened with collagen and α-smooth muscle actin, transforming growth factor (TGF)-β-positive myofibroblasts. Periostin, a secreted extracellular matrix protein, is involved in TGF-β-mediated fibrosis and myofibroblast differentiation. We hypothesized that periostin expression is required for hypoalveolarization and interstitial fibrosis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016